References:
l Gerges, S., S. Wahdan, D. Elsherbiny, and E. El-Demerdash. 2022. “Pharmacology of Diosmin, a Citrus Flavone Glycoside: An Updated Review.” European Journal of Drug Metabolism and Pharmacokinetics47: 1–18.
l Bovy, A., E. Schijlen, and R. D. Hall. 2007. “Metabolic Engineering of Flavonoids in Tomato (Solanum Lycopersicum): The Potential for Metabolomics.” Metabolomics: Official Journal of the Metabolomics Society3: 399–412.
l Franzmayr, B. K., S. Rasmussen, K. M. Fraser, and P. E. Jameson. 2012. “Expression and Functional Characterization of a White Clover Isoflavone Synthase in Tobacco.” Annals of Botany110: 1291–1301.
l Jiang, Y., X. Ji, L. Duan, et al. 2019. “Gene Mining and Identification of a Flavone Synthase II Involved in Flavones Biosynthesis by Transcriptomic Analysis and Targeted Flavonoid Profiling in Chrysanthemum indicum L.” Industrial Crops and Products134: 244–256.
l Wu, Q. W., M. Wei, L. F. Feng, et al. 2022. “Rhamnosyltransferases Involved in the Biosynthesis of Flavone Rutinosides in Chrysanthemum Species.” Plant Physiology190: 2122–2136.
l Akashi, T., Y. Sawada, N. Shimada, et al. 2003. “cDNA Cloning and Biochemical Characterization of S-Adenosyl-L-Methionine: 2,7,4'-Trihydroxyisoflavanone 4'-O-Methyltransferase, A Critical Enzyme of the Legume Isoflavonoid Phytoalexin Pathway.” Plant & Cell Physiology44, no. 2: 103–112.
l Kim, D. H., B. G. Kim, Y. Lee, et al. 2005. “Regiospecific Methylation of Naringenin to Ponciretin by Soybean O-Methyltransferase Expressed in Escherichia coli.” Journal of Biotechnology119, no. 2: 155–162.
l Achnine, L., D. V. Huhman, M. A. Farag, L. W. Sumner, J. W. Blount, and R. A. Dixon. 2005. “Genomics-Based Selection and Functional Characterization of Triterpene Glycosyltransferases From the Model Legume Medicago truncatula.” Plant Journal41: 875–887.
l Zhang, Y., G. Nowak, D. W. Reed, and P. S. Covello. 2011. “The Production of Artemisinin Precursors in Tobacco.” Plant Biotechnology Journal9: 445–454.
l Wu, X., Z. Liu, Y. Liu, et al. 2023. “SlPHL1 Is Involved in Low Phosphate Stress Promoting Anthocyanin Biosynthesis by Directly Upregulation of Genes SlF3H, SlF3′H, and SlLDOX in Tomato.” Plant Physiology and Biochemistry200: 107801.
l Olsen, K. M., A. Hehn, H. Jugde, et al. 2010. “Identification and Characterisation of CYP75A31, a New Flavonoid 3′5′-Hydroxylase, Isolated From Solanum lycopersicum.” BMC Plant Biology10: 21.
l Wei, S., Y. Xiang, Y. Zhang, and R. Fu. 2022. “The Unexpected Flavone Synthase-Like Activity of Polyphenol Oxidase in Tomato.” Food Chemistry377: 131958.
l Kaltenbach, M., G. Schroder, E. Schmelzer, V. Lutz, and J. Schroder. 1999. “Flavonoid Hydroxylase From Catharanthus roseus: cDNA, Heterologous Expression, Enzyme Properties and Cell-Type Specific Expression in Plants.” Plant Journal19: 183–193.
l Nakatsuka, T., Y. Abe, Y. Kakizaki, S. Yamamura, and M. Nishihara. 2007. “Production of Red-Flowered Plants by Genetic Engineering of Multiple Flavonoid Biosynthetic Genes.” Plant Cell Reports26: 1951–1959.
l Shimada, Y., R. Nakano-Shimada, M. Ohbayashi, Y. Okinaka, S. Kiyokawa, and Y. Kikuchi. 1999. “Expression of Chimeric P450 Genes Encoding Flavonoid-3′, 5′-Hydroxylase in Transgenic Tobacco and Petunia Plants(1).” FEBS Letters461: 241–245.
l Liu, X., J. Duan, D. Huo, et al. 2021. “The Paeonia Qiui R2R3-MYB Transcription Factor PqMYB113 Positively Regulates Anthocyanin Accumulation in Arabidopsis thaliana and Tobacco.” Frontiers in Plant Science12: 810990.